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PAMELA KÖLLNER-HECK

Swiss Reinsurance Company, Zurich, and Federal Office for the Environment, Bern, Switzerland

VERUSKA MUCCIONE

Swiss Reinsurance Company, and Myclimate, Zurich, Switzerland

(Manuscript received 6 October 2008, in final form 22 March 2010)

ABSTRACT

Current estimates of the European windstorm climate and their associated losses are often hampered by

either relatively short, coarse resolution or inhomogeneous datasets. This study tries to overcome some of

these shortcomings by estimating the European windstorm climate using dynamical seasonal-to-decadal (s2d)

climate forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF). The current

s2d models have limited predictive skill of European storminess, making the ensemble forecasts ergodic

samples on which to build pseudoclimates of 310–396 yr in length. Extended winter (October–April) wind-

storm climatologies are created using scalar extreme wind indices considering only data above a high

threshold. The method identifies up to 2363 windstorms in s2d data and up to 380 windstorms in the 40-yr

ECMWF Re-Analysis (ERA-40). Classical extreme value analysis (EVA) techniques are used to determine

the windstorm climatologies. Differences between the ERA-40 and s2d windstorm climatologies require the

application of calibration techniques to result in meaningful comparisons. Using a combined dynamical–

statistical sampling technique, the largest influence on ERA-40 return period (RP) uncertainties is the

sampling variability associated with only 45 seasons of storms. However, both maximum likelihood (ML) and

L-moments (LM) methods of fitting a generalized Pareto distribution result in biased parameters and biased

RP at sample sizes typically obtained from 45 seasons of reanalysis data. The authors correct the bias in the

ML and LM methods and find that the ML-based ERA-40 climatology overestimates the RP of windstorms

with RPs between 10 and 300 yr and underestimates the RP of windstorms with RPs greater than 300 yr. A

50-yr event in ERA-40 is approximately a 40-yr event after bias correction. Biases in the LM method result in

higher RPs after bias correction although they are small when compared with those of the ML method. The

climatologies are linked to the Swiss Reinsurance Company (Swiss Re) European windstorm loss model. New

estimates of the risk of loss are compared with those from historical and stochastically generated windstorm

fields used by Swiss Re. The resulting loss-frequency relationship matches well with the two independently

modeled estimates and clearly demonstrates the added value by using alternative data and methods, as

proposed in this study, to estimate the RP of high RP losses.
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1. Introduction

Extreme winds associated with midlatitude cyclones

represent a major loss potential for reinsurance companies

(Swiss Re 2000). To quantify this risk many insurance

companies use a combination of historical analyses of

windstorms and stochastic and/or dynamical models to

generate hypothetical windstorms. Generally, all data

sources, whether they are based on historical observa-

tions or dynamical models, have various advantages and

disadvantages. Historical datasets are relatively short,

have coarse spatiotemporal resolution, or suffer from

inhomogeneities, whereas dynamical models have biases

associated with their physics and parameterizations and

their use is often a trade-off between spatiotemporal

resolution and integration length.

Reinsurance companies are especially interested in

the frequency (or return period) of very rare extreme

wind events on continental and synoptic scales and their

associated losses. The primary influence on the accuracy

of the estimation of the frequency of rare events is the

number of observations of such events. Della-Marta

et al. (2009) used the 40-yr European Centre for Medium-

Range Weather Forecasting (ECMWF) reanalysis

(ERA-40) to estimate the return period (RP) of extreme

winds at continental and regional scales. They found

that the uncertainties associated with long RPs (ap-

proximately 30 yr) are in the range between 260% and

1200% of the RP estimate. This places limitations

on the use of these data for reinsurance risk analysis

applications.

The main aim of this study is to reduce the uncertainty

associated with estimating the RP of very rare windstorm

events. Previous studies investigating the frequency

of extreme winds or extreme cyclones in the Atlantic–

European domain use a number of different data and

methodologies depending on the aim of the study (see

Della-Marta et al. 2009). Generally all such observation-

based studies are limited by the length and/or resolution

of the data used. Improvements have been made us-

ing statistical resampling techniques (e.g., Dukes and

Palutikof 1995; Palutikof et al. 1999), allowing more

accurate inferences about the nature of the parent distri-

bution. These studies suffer from incomplete knowledge

of the dynamics that lead to such extremes. Alterna-

tively, long ensemble integrations of dynamical coupled

atmosphere–ocean general circulation models (AOGCMs)

can be used as a dynamical sample to estimate the sta-

tistics of extreme events. Applications include the esti-

mation of extreme synoptic-scale winds (van den Brink

et al. 2004a), coupling of extreme atmospheric and ocean

conditions with hydrological models (van den Brink et al.

2004b, 2005), and the statistics of extreme temperatures

(Vannitsem 2007). Broadly speaking, these types of data

are referred to as seasonal-to-decadal (s2d) data [see

Schwierz et al. (2006) for an overview].

The second major aim of this study is to investigate

the feasibility of coupling s2d windstorm climatologies

with the propriety loss model of the Swiss Reinsurance

Company (Swiss Re) to gain a better understanding of

high RP losses to a Swiss Re portfolio. In this respect,

this study is similar to Schwierz et al. (2009), who in-

vestigated windstorm-related losses in expected future

climate scenarios. Other studies that look at current and

future extreme wind-related damage are Klawa and

Ulbrich (2003), Heneka et al. (2006), Leckebusch et al.

(2007), and Pinto et al. (2007). However, these studies

are either regionally focused or use limited sample size

datasets or reanalyses as the reference current wind-

storm climate.

It is perhaps worth briefly explaining why we are in-

terested in using dynamical models (e.g., s2d) for the

estimation of extreme value statistics. Observations of

the climate system represent a sample of its dynamics

whose elements interact on different time scales. The

fact that some of these time scales exceed the length of

our observations (e.g., ocean processes) suggests that

observation-based extreme value statistics probably do

not sample the entire range of possible values. While

statistical resampling helps to overcome the observation

length limitations it cannot reproduce properties of dy-

namical systems such as bifurcations, fixed points, etc. A

key assumption of classical extreme value theory is that

the distribution function is continuous and differentia-

ble (Gumbel 1958). Balakrishnan et al. (1995) show that

this is not valid for simple dynamical systems, which

display deterministic chaos. Moreover, Vannitsem (2007)

shows that the statistics of temperature extremes in a

simplified general circulation model (GCM) only weakly

converge (as a function of integration time) to a stable

extreme value distribution.

We follow a similar approach to van den Brink et al.

(2004b, 2005) in this study by using AOGCMs that are

run in seasonal forecast mode (Anderson et al. 2003;

Palmer et al. 2004; Anderson 2008). These models are

initialized with perturbed initial conditions based on

observations at the beginning of each season and then

integrated freely with boundary conditions thereafter

(such as anthropogenic forcings; Liniger et al. 2007). At

the point in forecast lead time where the skill of fore-

casts is close to zero the ensemble members can be

treated as independent samples of the model climate

system (i.e., ergodic samples). A possible drawback of

using such models to estimate the current (and future)

climate is that the results are likely to be model de-

pendent because of many model uncertainties (see, e.g.,

OCTOBER 2010 D E L L A - M A R T A E T A L . 2093



Kharin and Zwiers 2000; Schwierz et al. 2006). These

uncertainties need to be addressed when we use the

Swiss Re loss model, which relies on observations for its

calibration.

Below we elaborate the specific aims of this study:

1) to quantify the predictability of storminess over the

western European domain in the current generation

of s2d climate forecasts from the ECMWF;

2) to assess the usefulness of s2d data as a surrogate

(pseudo) climate to estimate the frequency and in-

tensity of windstorms over Europe and to quantify

the amount to which ERA-40 may under- or over-

estimate the severity and frequency of windstorms;

3) to apply the new storm climate to a user application

model, namely, the Swiss Re windstorm loss model,

to compare the loss-frequency estimates based on the

Swiss Re and s2d windstorm climatologies.

We start with an overview of the data and models used

in this study and the calculation of extreme wind indices

(EWI) that will form the basis of estimating the windstorm

climate. The following sections describe the methodology

and the main results, including an intercomparison of the

extreme wind climatologies and modeled loss estimates,

followed by some discussion and conclusions.

2. Data and model description

In this section we describe the datasets used in this study

and the necessary background details about the Swiss Re

loss model.

a. S2d model data and ERA-40 reanalysis data

In this study we use the ECMWF seasonal climate

forecasts, which are also known as s2d forecasts (e.g.,

Anderson 2008), and ERA-40 (Uppala et al. 2005). The

10-m-level wind gust speed is a useful parameter for as-

sessing wind extremes at the surface that are responsible

for damage to infrastructure and the loss of human life. A

previous study by Della-Marta et al. (2009) demonstrated

that the wind gust parameterization in ERA-40 produces

unrealistic wind gust estimates in the areas of either steep

orographic gradients or coastal regions of Europe. The

same parameterization has been used in earlier versions

of the ECMWF s2d forecasts. The latest version of the

ECMWF s2d forecast model (system 3; ECMWF 2007;

Anderson et al. 2007) has an improved wind gust pa-

rameterization and therefore could be used in this study;

however, to maximize the use and transferability of anal-

ysis methods, we use geostrophic wind speed (GW) at the

850-hPa level. By using GW we lose both information

about real surface winds affected by, for example, surface

roughness, and possible intensification associated with

mesoscale frontal features. On the other hand we gain

a wind climatology that is independent of the various

parameterizations and one that focuses model differences

on those associated with large-scale circulation. The latter

represents an advantage for model intercomparisons.

We use three different sets of s2d hindcasts from the

ECMWF (an overview is given in Table 1). The latest

s2d model is known as system 3 (SYS3) and is based

on the physics documented in ECMWF (2007). Other

datasets are system 2 (SYS2) and the ECMWF model

used in the Development of a European Multimodel

Ensemble System for Seasonal-to-Interannual Predic-

tion (DEMETER) project and the first phase of the

European Union Sixth Framework Programme (EU FP6)

Ensemble-Based Predictions of Climate Changes and

their Impacts (ENSEMBLES) project (EC-DEM; Palmer

et al. 2004) both based on similar physics (ECMWF

2003). GW is calculated from the model geopotential

height (GPH) at 850 hPa (Holton 2004). Our analysis

concentrates on the extended winter season, October–

April, and we focus our results on the eastern North

Atlantic and western Europe (358–738N, 158W–308E)

domain. Figures 1a,b present the domain and example

wind fields as represented in the Swiss Re dataset and

ERA-40 GW data, respectively. Note that the October–

April season of s2d data is formed using a composite

of data from two different forecast initialization dates.

Rationale for this is found in the predictability assess-

ment presented in section 3a.

TABLE 1. An overview of the datasets used in this study.

Dataset

Resolution

(spherical

harmonics)

Output time

resolution (h)

No. of hindcast

years (year range)

Combination of forecasts

used to create an

ONDJFMA season

Total number of

ensemble members

SYS3 T159 12 26 (1981–2006) September (1) and November (2)

forecasts: 1111222

316 (11 for each forecast,

41 for 2006)

SYS2 T95 12 20 (1987–2006) September (1) and November (2)

forecasts: 1111222

310 (5 between 1987 and 2000;

40 between 2001 and 2006)

EC-DEM T95 24 44 (1958–2001) August (1) and November (2)

forecasts: 1111222

396 (9 for each forecast)

ERA-40 T159 6 45 (1957–2001) — —
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b. Extreme wind indices

Della-Marta et al. (2009) used a number of different

scalar indices (time series, known as EWI) to sum-

marize a windstorm’s magnitude and spatial extent

over a given domain. Three of the five indices used in

the study (Mean, Q95, and Sw3q90) are based on ab-

solute measures of the wind speed, whereas two (Sfq95

and Sfq95q99) are based on wind speeds relative to

local climatology (see appendix B for their exact def-

inition). They found that the EWIs—Mean, Sfq95, and

Sfq95q99—result in similar RP estimates for individ-

ual storms in ERA-40 and recommend that these in-

dices be used when more weight to local winds relative

to their climatology is needed and to find storms af-

fecting regions not subject to regular extreme wind

events. The EWIs Sw3q90 and Q95 result in simi-

lar RP estimates for individual storms. These indi-

ces should be used when more weight to the absolute

magnitude of a windstorm is needed, regardless of the

local wind climatology. Throughout the remainder of

the paper we will concentrate on presenting results

of the Sw3q90 index, which is the sum of wind speed

cubed above the extended winter season 90th per-

centile, and the Sfq95q99 index, which is the sum of

the fraction of extreme wind divided by the length of

the distribution tail at each grid point. See appendix B

for a complete specification of these indices and Della-

Marta et al. (2009) for more details, including an in-

tercomparison of the RPs of historical storms based on

these indices.

c. Swiss Re windstorm data

Swiss Re bases its estimate of European windstorm risk

on a dataset consisting of around 150 historical wind-

storm fields from 1947 to the present (SR Hist) and a

derived, stochastically generated windstorm field data-

set (SR Stoch). Each field represents the maximum

wind gust at 10-m level over the lifetime of the storm.

An example is shown in Fig. 1b. The creation of a his-

torical wind field is a multistep process starting with the

digitization of surface air pressure and the position of

frontal features from weather charts. Quasigeostrophic

principles are used to create a first guess of the sustained

wind field. Frontal gust correction factors are then cal-

culated based on the linear relationship between the

quasigeostrophic wind speeds and measured gust wind

speed at the positions of the digitized fronts. Then

a third and final stage is the correction of the wind field

by adding a bilinearly interpolated grid of observed

10-m wind gusts values in the regions where the storm

had its highest impacts. The SR Hist dataset has un-

dergone many iterations to improve its quality, from

specific corrections in Alpine regions to country-specific

validation/corrections with in situ wind measurements.

The process of developing such a dataset is labor in-

tensive and has been focused on mapping wind fields that

have affected Swiss Re’s business. For this reason, the

dataset represents a subset of the extreme wind climate

over Europe and is not necessarily a homogeneous sam-

ple of the storminess over the larger domain considered

here (see Della-Marta et al. 2009 for more discussion). To

FIG. 1. Example wind fields (m s21; legend on the right-hand side) from the Swiss Re operational windstorm hazard

dataset for Daria, which occurred between 0000 UTC 25 Jan and 0000 UTC 26 Jan 1990. (a) The maximum wind gust

at the 100-m level over the lifetime of the storm at each grid point. The resolution of the gridded dataset is 0.58.

(b) The maximum ERA-40 850-hPa GW. See sections 2a and 2c for more details.
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overcome these shortcomings Swiss Re has created a

stochastically generated windstorm dataset, using the

historical fields as a basis. Each historical windstorm field

has been resampled by perturbing its intensity and posi-

tion within physically constrained boundaries. The posi-

tion of each historical storm is perturbed either by a rigid

motion or a rotation with the bounds of 650–100 km

and 658 (along the major axis of storm movement), re-

spectively. Each position perturbation is considered

equally likely as the original historical wind field on which

it is based; however, the wind intensity of the historical

wind fields are altered subject to the constraint of the

observed frequency–intensity relationship derived from

a storm severity index (Lamb and Fydendahl 1991; sim-

ilar the Sw3q90 EWI). In other words, each intensity

perturbed storm is assigned a frequency depending on its

observed frequency at a given intensity. Frequencies for

the most extreme perturbed windstorms, where there are

few observed storm severity index values, are assigned by

using an extreme value distribution fitted to the observed

index data. This ensures consistency in the frequency–

intensity in SR Hist and SR Stoch datasets. The SR Stoch

dataset represents around 3000 years of synthetic wind-

storm climate and contains 10 010 events. See Schwierz

et al. (2009) for more details.

d. Swiss Re loss model

The proprietary loss model of the Swiss Re is based

on four modules (Zimmerli 2003; Schwierz et al. 2009):

(i) the hazard module is essentially the SR Hist and SR

Stoch datasets described above (Fig. 1b). (ii) The vul-

nerability module models a measure of damage (loss) as

a function of the intensity of an event. A vulnerability

curve (see Fig. 2a) is derived from loss data or based on

engineering considerations for each risk type (e.g., res-

idential, commercial, agricultural). (iii) The value dis-

tribution describes the amount (total sum insured),

location, and risk type of the insured values (see Fig. 2b).

(iv) The insurance conditions comprise all the in-

formation on the specific details of particular contracts

and determine the proportion of the loss that is insured.

In this study (as also used in Schwierz et al. 2009) a

slightly simplified version of the operational Swiss Re

model (called catXos) is employed. It uses an aver-

age vulnerability curve for all risk types and locations

(Fig. 2a). The western European property insurance

portfolio (Fig. 2b) is chosen to be representative of the

western European market.

3. Methodology

In the following section we describe the most impor-

tant details of methods used throughout the paper. It

starts with the methodology associated with and the re-

sults of assessing the prediction skill of seasonal western

European storminess using s2d models. It continues with

an overview of the storm selection process and extreme

value analysis (EVA) techniques, followed by methods of

calibration applied to storm fields or an EWI. All analyses

of uncertainty are presented as a 95% confidence interval

(CI) unless otherwise stated.

a. Prediction skill for winter storminess

We start with investigating the large-scale bias of s2d

models relative to ERA-40 for the mean extended win-

ter season GPH at 850 hPa. Figure 3a shows the mean

pattern of GPH in ERA-40 and Figs. 3b,c,d show the

bias of the s2d models relative to ERA-40. SYS3 GPH

FIG. 2. (a) The catXos vulnerability curve and (b) the value distribution of the Swiss Re portfolio used in this study.

Panel (a) shows the expected loss (percent of the total insured value, y axis) as a function of wind speed intensity

(m s21, x axis). In (b) the small blue crosses denote the location of the asset in the portfolio, and the size of the circle

represents the relative value of the asset. See section 2d for more details.
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differences display an enhanced westerly flow compared

to ERA-40 (Fig. 3b), with a deeper Icelandic low and a

stronger Azores high, whereas both SYS2 and EC-DEM

display a general positive GPH bias over the North At-

lantic region compared to ERA-40. Biases in trends are

not considered here but can be assumed to be of minor

relevance for GPH in the extratropics (Liniger et al. 2007).

The skill in predicting extended winter season stormi-

ness is assessed in terms of evaluating the Q95 index

(appendix B) from s2d model data (specified in Table 1)

against that from the ERA-40 data. Two skill metrics

are used: (i) correlation skill score, which correlates the

ERA-40 Q95 with the ensemble mean s2d Q95 for the

months November–April (May) [NDJFMA(M)] and (ii)

debiased ranked probability skill score (RPSSd; Weigel

et al. 2007), which measures the probabilistic predictabil-

ity of quantile forecasts (here we use terciles). The skill

metrics are computed from monthly mean Q95 values.

Sampling uncertainty is assessed using a bootstrap with

replacement 1000 times.

Figure 4 shows the results of each skill metric applied

to each s2d model. A notable feature is significant pos-

itive skill for the first month of each of the models’

forecasts (except EC-DEM RPSSd; Fig. 4f). Using ei-

ther skill metric shows that the predictability of the first

month of the EWI increases with model development.

All models show little or no skill after November. Gen-

erally the widths of bootstrapped CIs are smaller for EC-

DEM skill metrics than the other models because of the

larger sample (Table 1, fourth column). If both the cor-

relation skill and the RPSSd skill are not significantly

different from zero, there is no predictive skill and the

ensemble members are statistically independent (Weigel

et al. 2008b). Therefore it is justified that these data are

used as a pseudoclimate once the first month of each

forecast is removed (see Table 1).

b. Windstorm selection and extreme value analysis

The EWI time series are the basis of our storm se-

lection procedure. From these series it is possible to

identify and quantify the intensity of many of the well-

documented windstorms that have affected this area

over the ERA-40 period (Della-Marta et al. 2009). We

use the peaks over threshold approach (e.g., Davison

and Smith 1990). Their distribution is modeled with a

generalized Pareto distribution (GPD) whose parame-

ters are fitted using either maximum likelihood (ML) or

L-moments (LM; Hosking 1990), and we assume a Pois-

son occurrence for the events exceeding the threshold (see

also Palutikof et al. 1999 and Della-Marta et al. 2009). The

independent peaks over threshold series is obtained using

a standard runs declustering (Coles 2001; Stephenson and

Gilleland 2006) where the minimum separation between

exceedances of the threshold is set to 3 days. Threshold

selection and model evaluation follow the typical graph-

ical diagnostic methods outlined in Coles (2001) and

an objective goodness-of-fit (GOF) test based on the

Anderson–Darling statistic detailed in Choulakian and

Stephens (2001). The declustered peaks over threshold

series (DPOT) of each EWI represent the occurrence

and intensity of windstorms over the western European

domain.

To introduce notation that will be used throughout

the paper we rewrite the relevant formulae from Coles

(2001) and Palutikof et al. (1999). The GPD can be

written in terms of a generic variable w as

G(w) 5 1� 1 1
j

s
(w� u)

� ��1/j

, (1)

conditional on w . u and j 6¼ 0 where u is the selected

threshold. The GPD is characterized by two parameters:

FIG. 3. The long-term extended winter mean GPH at 850 hPa (m) over the North Atlantic and European domain.

(a) ERA-40 and the difference with s2d data: (b) SYS3, (c) SYS2, (d) EC-DEM.
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FIG. 4. Prediction skill for winter storminess in ECMWF s2d forecast data using the monthly average EWI (Q95)

over the eastern North Atlantic and western Europe. (a),(c),(e) The deterministic skill measured by the correlation

between the monthly mean ensemble mean Q95 of the labeled s2d hindcasts and ERA-40. (b),(d),(f) The proba-

bilistic skill of Q95 terciles assessed in terms of the RPSSd skill score (Weigel et al. 2007). The number of hindcast

years and the number of ensemble members for each of the hindcasts are given in Table 1. The error bars on all plots

represent the CI based on a bootstrapping technique; see section 3a.
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j the shape parameter and s the scale parameter. If

j . 0 then the maximum of the GPD is unbounded,

whereas if j , 0 the tail has a finite extent, if j 5 0 then

the GPD reduces to the exponential distribution and is

unbounded in the limit j / 0.

Equation (1) can be rewritten in terms of probabili-

ties, which leads to the calculation of the N-year return

level (RL) wN, which is exceeded on average once every

N years (the RP) and is given by

w
N

5 u 1
s

j
[1� (lN)�j], (2)

where l is the mean number of threshold exceedances

per extended winter season. When the ML method is

used we estimate the GPD fit uncertainty using the pro-

file log-likelihood method recommended by Coles (2001)

where accurate information about the uncertainty of

derived parameters (such as the RP) are needed. Where

the LM method is used we adopt a parametric resampling-

based approach to estimating the uncertainty (Frei

et al. 2006; Della-Marta et al. 2009). The declustering

method behaves differently for different temporal res-

olutions of the EWI time series. For example, the EC-

DEM dataset has a temporal resolution 24 h, whereas

ERA-40 has a time resolution of 6 h. Since the differ-

ence in time resolution is of the same order as a typical

windstorm development and translation time across the

domain, it is probable that a certain amount of aliasing of

the windstorm signal is present in the EC-DEM EWI

relative to ERA-40 EWI (see Della-Marta et al. 2009). To

compare windstorm climatologies the time resolution of

ERA-40 EWI is degraded to match that of the s2d data-

set with which we compare it (Table 1); we refer to this as

aliasing.

c. Calibration

There are two reasons why we use calibration tech-

niques in this study: 1) each s2d model has circulation

biases with respect to ERA-40 (Fig. 3) that are also

present in s2d extreme wind climatologies (after cali-

bration the s2d extreme wind climatologies are referred

to as C_s2d_to_ERA); 2) to derive meaningful loss es-

timates comparable to real market losses. CatXos is

calibrated for use with SR Hist, therefore ERA-40

and s2d windstorm fields must be calibrated to this da-

taset (referred to as C_ERA_to_SR, and C_s2d_to_SR,

respectively).

We apply the techniques to data of the form w(t),

which represents the scalar extreme wind index, for ex-

ample, Q95(t) (C_s2d_to_ERA), or data in the form of

a wind field, w(x, y, ts) 5 maxfw(x, y, t): t 2 fts, . . . , tegg,

where ts and te denote the start and end times of the

windstorm, respectively. Note that C_s2d_to_ERA,

C_ERA_to_SR, and C_s2d_to_SR are performed on a

wind field, where all grid points’ wind speeds are pooled

together. C_s2d_to_ERA is also applied to EWI and

uses all values of the time series. For each of the cali-

bration steps, C_s2d_to_ERA, C_ERA_to_SR, and

C_s2d_to_SR, there are three different methods used to

perform the calibration. The percentile-based calibra-

tion approach (PERC), whether it is applied to EWI or

wind fields, is given by the general form

C�s2d�to�RA5S(F�1
C�s2d�to�ERA)5F�1

ERA(p)�F�1
s2d(p)

C�ERA�to�SR5S(F�1
C�ERA�to�SR)5F�1

SR(p)�F�1
ERA(p)

C�s2d�to�R5S(F�1
C�s2d�to�ERA)1S(F�1

C�ERA�to�SR),

(3)

where p are probabilities at which the quantile functions

are evaluated and S(�) represents a cubic spline function.

In the case of calibrating wind fields, the quantile function

is calculated empirically from F 21(p) 5 minfw: p #

F
*
(w)g, where F

*
(w) is the (latitude weighted) cumulative

distribution function where p 2 f0.01, 0.02, . . . , 0.99,

0.991, 0.992, . . . , 0.999g. In the case of calibrating EWI

each quantile function is approximated using a piece-

wise approach. The quantile function for index values

below the chosen GPD threshold is calculated empiri-

cally, using a sequence of p 2 f0.01, 0.02, . . . , ug,
whereas the quantile function above the threshold is

taken from fitting a GPD of the form in Eq. (1) to the

DPOT EWI values using the same methodology given

in section 3b. Essentially, the distribution functions of

each data source are matched (Della-Marta and Wanner

2006); however, the added benefit is that we use an ex-

treme value distribution to model the extremely high

EWI values, reducing the possibility of sampling errors

and allowing the estimation of extreme quantiles for

which there exist few or no observations. Therefore

this approach also removes the possibility for a differ-

ent windstorm climate (different from ERA-40) to be

obtained.

The other two calibration methods are special cases of

the PERC method detailed above and adjust all data

based on the difference in one quantile in the distribu-

tion. For example, choosing p in Eq. (3) with a single

number such as 0.95 calibrates the differences in the 95th

percentile from each set dataset (95PERC). The p could

also represent the probability which corresponds to

the mean of the data (MEAN). Such approaches allow

varying magnitude differences in the climatologies to be

maintained.
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CALIBRATION SAMPLING ERROR ESTIMATION

Each of the calibration curves [Eq. (3)] is subject to

sampling error. We assess the uncertainty using a boot-

strap technique (Efron and Gong 1983) combined with

kernel smoothers (to improve efficiency). For C_s2d_

to_SR the technique consists of resampling with re-

placement the windstorm fields w(x, y, ts) 200 times. All

200 storm fields are combined to a single vector before

the probability density function is estimated using a ker-

nel smoother. We use a Gaussian kernel (R Development

Core Team 2005), which gives good representations of the

densities without over smoothing (not shown).

d. Sampling error estimation

Given that the ERA-40 dataset provides only 45 sea-

sons compared with around 300 seasons from the s2d

data (Table 1, column 6), we test to what extent the

uncertainty in the ERA-40 storm RP estimates is due to

sampling uncertainty using two different approaches.

The first approach calculates the rate of convergence of

GPD parameters as a function of the number of seasons

used to fit the GPD (similar to Vannitsem 2007). For

example, a random ordered sample of the total number

of seasons from the DPOT series is taken (approxi-

mating chaotic interannual variability). Then a GPD

is fit successively to a gradually increasing number of

seasons. This is repeated 1000 times (resampling with

replacement) to visualize the rate of convergence to the

s2d climatology. We repeat this general procedure using

pseudorandom numbers conditioned by the GPD pa-

rameters and the threshold exceedance frequency l fit-

ted to each EWI. The random draws from the fitted EWI

GPD represent scalar metrics of windstorm fields and

allow us to test hypotheses concerning possible biases in

the ML or LM method of fitting the GPD. We compare

the magnitude of possible biases in parameters to the

magnitude of the interquartile range (IQR) according

to R 5 100.0jjbiasjj/IQR to determine their relative

importance to sampling variability.

The second approach focuses on 45-season samples

and two different types of uncertainty: (i) sampling un-

certainty, assessed by taking random 45-season samples

of the DPOT series from s2d and looking at the range of

fitted GPDs, and (ii) fit uncertainty, the uncertainty as-

sociated with fitting the GPD to each of the 45-season

samples. These two uncertainties are not mutually ex-

clusive, however; the sampling uncertainty can be thought

of as dynamical uncertainty associated with having only

45 seasons of data, whereas the fit uncertainty can be

thought of as the derived statistical uncertainty associated

with having only 45 seasons of data. The sampling

uncertainty calculation consists of taking 1000 different

sets of 45 seasons of the DPOT series (resampling with

replacement). The fit uncertainty calculation uses the

same samples as above; however, we fit a GPD to each

and calculate the median of the differences between the

fit and the upper and lower bounds of the CI. The me-

dian fit uncertainty series are then added back to the

best-fit ERA-40 GPD.

e. Bias correction of the estimated climatologies

Both ML and LM are known to result in biased pa-

rameter estimates when used on limited samples and for

various ranges of possible parameter settings; generally

the biases being highest in magnitude for small samples

(e.g., Cox and Snell 1968; Pandey et al. 2003). These

biases can be corrected using resampling and bootstrap

techniques (e.g., Zhang and Stephens 2009; Pandey et al.

2003) or directly using analytical techniques (Cox and

Snell 1968). Using a general method to correct statistical

model parameter biases (Cox and Snell 1968), Giles and

Feng (2009) derive a first-order analytical bias correc-

tion formula using the log-likelihood equation of the

GPD and show that the analytical approach is more

efficient than a bootstrap approach. However, at the

time of writing their correction scheme was not entirely

applicable to our ML-fitted GPD parameters since many

of our GPDs have a negative shape parameter where

their scheme does not work efficiently. Therefore we

have simply corrected the shape and scale parameters by

bias estimated using the dynamical–statistical resam-

pling technique.

4. Results

The section starts with a summary of the storm se-

lection process and extreme wind climatologies, fol-

lowed by the main results, the comparison of estimates

of the European windstorm climate, and the associated

losses to a Swiss Re portfolio.

a. Windstorm identification, extreme value analysis,
and climatology

Figure 5 summarizes the storm selection process. The

first step 1) calculate the EWI series, 2) decluster the

peaks over threshold series (Fig. 5a), 3) fit the GPD (Fig.

5b), and 4) assess the quality of the fit using various di-

agnostics such as a quantile–quantile (qq) plot (Fig. 5c)

combined with objective GOF tests (Fig. 5d). Figure 5a

shows the effectiveness of the Sw3q90 in measuring the

difference in magnitude of extreme winds and the ef-

fectiveness of the declustering method in identifying

major windstorm events. Well-known storms such as

Daria, which occurred on 24 January 1990, are identified
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as a strong peak in the Sw3q90 series (seventh gray

triangle from the left of Fig. 5a), whereas the storms

Vivian and Wiebke, which were separated by only a

short amount of time (25 and 27 February 1990, respec-

tively) are identified as one cluster maxima in the DPOT

series. The latter is a limitation of the scalar index ap-

proach to separate storms that occur close in time;

however, the statistics of GPD fit do not seem to be

overly affected as discussed in Della-Marta et al. (2009).

The GPD fit (Fig. 5b) to ERA-40 Sw3q90 is bounded,

that is, a negative shape parameter. Other indices gen-

erally display less negative shape parameters; however,

all shape parameters are less than zero and remain so for

all tested thresholds (see below). The qq plot (Fig. 5c)

indicates that the GPD fit is reasonable apart from a

slight departure from the GPD distribution in the mid-

dle tail. The GOF test (Choulakian and Stephens 2001)

suggests that the chosen GPD threshold (97.5% quan-

tile) results in a good GPD fit (Fig. 5d, solid black line).

According to Choulakian and Stephens (2001), p values

greater then 0.1 indicate a sufficient GOF to the GPD

distribution. For comparison, GOF results for the SYS3

Sw3q90 climatology are shown as a dashed line in

Fig. 5d. The 97.5% threshold was also chosen for this

data–index combination because of the jump in GOF at

the 97.5% quantile. Not all data–index combinations

resulted in the same threshold being chosen for each

dataset (see Table 2), and sometimes the GOF statistic

did not increase in a general monotonic way with in-

creasing threshold, which would be expected if the index

data were asymptotically Pareto distributed. We tested

the sensitivity of our results for each data, EWI, fitting

method, and threshold combination (using the 95%,

96%, 97%, 97.5%, 98%, 99%, and 99.5% quantiles).

The LM method results in generally higher GOF p

values than the ML method, indicating a better GOF

using LM. Sfq95q99 scores consistently high GOF p

values across all thresholds and all datasets, indicating

FIG. 5. A summary of the windstorm selection process. (a) The Sw3q90 DPOT for the 1989/90 extended winter

season. The thin black line is the Sw3q90 index. The circles indicate values of the index that exceed the 97.5th

percentile threshold (dashed black line). Gray filled triangles show the maximum value of the index within each

cluster. Membership of DPOTs (circles) to a particular cluster is denoted by alternating light and dark gray bands on

the top margin of the plot. (b) The RP (yr) and RL of the GPD fit to the DPOT series [black line, Eq. (2)]. The dash–

dotted lines show the upper and lower bounds of the CI of both RL and RP calculated using profile log-likelihood.

(c) Plot of qq of the fitted GPD to ERA-40. (d) GOF p value for ERA-40 (solid) and SYS3 (dashed). The black dots

in (b) and (c) represent the maxima of the DPOT series that correspond to the gray triangles in (a).
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that the normalizing effect of this index makes it a stable

choice for comparisons between datasets. The three

magnitude-based indices—Mean, Q95, and Sw3q90—all

display GOF at various thresholds (Table 2), which are

generally higher for SYS2 and EC-DEM, Sw3q90 being

the exception where the threshold for all datasets was set

close to the 97.5% quantile. The index Sfq95 displays

high GOF fitted to ERA-40 but low GOF to SYS2 and

SYS3. Depending on the EWI, dataset, and threshold,

the storm selection method finds between 263 and 380

windstorms in ERA-40 and between 367 and 2363 storms

in the s2d data (Table 2).

A comparison of the ERA-40 windstorm climatology

with the s2d windstorm climatologies reveals large dif-

ferences in the EWI absolute values (Fig. 6) and their

corresponding model parameter values (Tables 2 and 3)

for the Mean, Q95, and Sw3q90 EWI. The climatologies

using EWI based on local wind climatologies (Sfq95 and

Sfq95q99) are quite similar in magnitude because of the

normalizing effect inherit in these indices. Differences

in the mean circulation are reflected in the overall dif-

ferences between the climatologies (see Fig. 3), with

SYS3 having higher intensity values than ERA-40 in all

intensity-based EWI. SYS2 and EC-DEM are lower

in wind intensity than ERA-40 but are similar to each

other, which is expected since these models have similar

physics and resolution (Figs. 6a–f). The widths of the CIs

for each of the s2d models are much smaller than those

of ERA-40, and there is clearly a less negative shape

parameter in the climatologies of the s2d models using

intensity-based EWI relative to ERA-40 (Table 3). As

stated above, the LM GPD fits have higher GOF. The

GOF test is more sensitive to lack of fit in the extreme tail

of the GPD than it is to the lower tail (Choulakian

and Stephens 2001). The high GOF with LM is some-

what contrary to the observed quality of the fits in the

extreme tails. Comparing Figs. 6b,d,f with Figs. 6a,c,d,

the LM-fitted GPD does not seem to fit the data as well

as it does using the ML method in the range of approxi-

mately 20–300 yr. The ML fits seems to take more of

a ‘‘middle path’’ through the observations, whereas the

LM fits seem to be conditioned more by the lower RP

EWI observations. It could be that the sensitivity of the

GOF test diminishes with a high number of samples, such

as used here.

Other differences (Fig. 6) lie in the position along the

x axis of the first DPOT (windstorms, colored dots). The

varying position indicates 1) that in some cases a differ-

ent threshold was chosen (based on the GOF test; see

Table 2) or 2) that the mean number of storm occur-

rences per season l is different for each dataset (Table 2).

Histograms in Fig. 7 show the empirical and theoretical

distribution of the number of windstorms identified in

each season using Sw3q90 choosing a 97.5% quantile

threshold for all datasets. All distributions show some

underdispersion. This has implications for the clustering

(in time) of storm events (Mailier et al. 2006).

The reasons for the systematic differences in both the

atmospheric circulation at 850 hPa and extreme wind

climatologies are not fully known, but certainly some of

the differences are due to model resolution (Jung et al.

2006). SYS2 and EC-DEM have a horizontal resolution

of T95, whereas SYS3 and ERA-40 have a resolution of

T159; this may explain why both ERA-40 and SYS3

have higher wind speeds (cf. Fig. 6). Model physics are

also likely to play a role in the differences shown here;

SYS2, EC-DEM, and ERA-40 all have similar physics

(ECMWF 2003), whereas SYS3 has substantially revised

physics (ECMWF 2007). Overall, these results indicate

that a direct comparison of windstorm climatologies is

not possible and that a calibration technique must be

used.

b. Estimates of windstorm return periods

1) CALIBRATION OF S2D AND ERA-40
WINDSTORM CLIMATOLOGIES

The three different calibration techniques, PERC,

95PERC, and MEAN, were applied to calibrate each

s2d EWI series to the corresponding ERA-40 climatol-

ogy, obtaining C_s2d_to_ERA. Figure 8 shows the cal-

ibration curves using the PERC method and the Sw3q90

series. The PERC curve for SYS3 Sw3q90 suggests in-

creasingly negative adjustments to SYS3 with increasing

Sw3q90 magnitude to be compatible with ERA-40 (0–80

nondimensional units). Both SYS2 and EC-DEM dis-

play mostly positive adjustments (2–5 nondimensional

units) over most of the distribution; however, at higher

percentiles (above the 95% quantile) the adjustments

change quickly from being positive to negative. This

occurs since the EWI climatologies of both SYS2 and

EC-DEM cross ERA-40 at around 145 nondimensional

units (Fig. 6e). Note in Figs. 8c,f there are minor dis-

continuities at the point where the calibration technique

changes from the empirical method to the GPD method.

While this is not desirable, it does not affect the subsequent

TABLE 2. The threshold above which a GPD was fitted to the

DPOT of each EWI (percent quantile) for each dataset; in paren-

theses is the number of windstorms identified above the threshold.

EWI ERA-40 SYS3 SYS2 EC-DEM

Mean 95.0 (263) 95.0 (1661) 98.0 (846) 97.0 (1334)

Q95 95.0 (380) 95.0 (2331) 98.0 (1258) 99.5 (367)

Sw3q90 97.5 (232) 97.5 (1516) 97.0 (1621) 97.5 (1475)

Sfq95 95.0 (332) 95.0 (2042) 95.0 (1995) 95.0 (2230)

Sfq95q99 95.0 (361) 95.0 (2240) 95.0 (2199) 95.0 (2363)
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FIG. 6. The RP and RL of the GPD fit [solid colored lines; Eq. (2)] to each DPOT EWI series.

GPD are fitted (a),(c),(e),(g),(i) using ML and (b),(d),(f),(h),(j) using LM. The name of each index is

on the left-hand side of each row. Datasets are colored according to the legend in (c) and (d). The

solid filled colored dots represent the DPOT series (see example in Fig. 5a). Dash–dotted colored

lines show the upper and lower bounds of the CI of both RL and RP calculated using profile log-

likelihood (parametric resampling) method for ML (LM), respectively.
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analysis since the storm climatologies are based on the

extreme tail of the distribution.

Applying the calibration curves and then going through

the storm selection and GPD fitting procedure again re-

sults in calibrated climatologies. Figure 9 contrasts the

various EVA climatologies of Sw3q90. Figures 9a,c,e

compare SYS3 and SYS2 with 12-hourly aliased ERA-40

for each of the calibration techniques: PERC, 95PERC,

and MEAN, respectively. Figures 9b,d,f compare EC-

DEM with 24-hourly aliased ERA-40 for each of the

calibration techniques, as for Figs. 9a,c,e, respectively.

The PERC technique results in SYS2 and SYS3 and

EC-DEM windstorm climatologies being almost exactly

the same (Figs. 9a,b) as the aliased ERA-40 climate

(see Table 4). The 24-hourly aliased ERA-40 climate

(Fig. 9b) is very different from the 12-hourly aliased

ERA-40 climate (Fig. 9a). The 24-hourly aliasing of

ERA-40 has a high impact on the shape of the fit, re-

sulting in a much shorter tail (Fig. 9b, black line, com-

pared to Fig. 9a, black line). The aliasing of ERA-40 to

24-hourly resolution has resulted in similar windstorms

being selected, that is, major storms such as Daria are

identified; however, the maximum intensity of each storm

in the aliased series is sometimes lower. The 95PERC

calibration allows greater differences in the windstorm

climatologies to remain. Both SYS3 and SYS2 (Fig. 9c)

indicate that the RP of storms in ERA-40 are under-

estimated. The best-fit SYS2 curves lies within the CI of

ERA-40 12-hourly aliased series, whereas the SYS3 es-

timate lies outside of the CI. Again we see the effects of

the aliasing and calibration technique in Fig. 9d. Given

these results we will not consider climatologies based

on EC-DEM any further in this study. Calibrating using

the MEAN technique results in an even more extreme

windstorm climate based on SYS3 and SYS2 (Figs. 9e,f)

than for the 95PERC calibration compared to ERA-40,

and it is likely that this type of calibration does not result

in a meaningful comparison.

2) SAMPLING AND FIT UNCERTAINTY ESTIMATES

We chose to investigate SYS3 PERC-calibrated re-

sults in more detail since the model resolution is the

same as ERA-40 [shown in Jung et al. (2006) to have

a high impact on extratropical cyclone numbers and in

Weisheimer et al. (2003) to have an influence on large-

scale circulation modes]. However, we could have equally

decided to use SYS2 results since SYS2 and ERA-40 have

similar physics and SYS3 physics display different biases

to SYS2 and EC-DEM (Fig. 3).

In Fig. 9a the windstorm climatology based on SYS3 is

almost exactly the same as ERA-40. Effectively the

PERC method has removed any differences between

the SYS3 EWI climatologies and the ERA-40 clima-

tology. Therefore, at this stage we are no closer to as-

sessing whether the ERA-40 climate is close to the true

climate; that is, we cannot answer the question whether

the ERA-40 is a representative, unbiased sample of the

true winter windstorm climate. One way to help answer

this question is to utilize the longer s2d data by per-

forming sampling experiments. Figures 10a,b show the

bias and rate of convergence of the scale and shape

parameter of the ML-fitted Sw3q90 SYS3 GPD as a

function of the number of seasons (of DPOT data) used

in the fit. Neither the scale nor the shape parameter has

converged for a 45-season climatology, and they are

different from the long-term parameter estimates. The

magnitude of the biases represent approximately 116%

and 222% of the IQR of samples taken using 45 season

lengths for the scale and shape parameters, respectively.

Approximately 65% of the shape and scale parameters

lie below and above the long-term (316 seasons) SYS3

climatology, respectively (similar results are found for

SYS2). A more negative shape parameter combined with

a higher scale parameter than the converged values im-

plies a shorter-tailed climatology when only 45 seasons

are used. Figures 10c–f reveal that there is also a lack of

convergence of the RPs [Eqs. (1) and (2)] for 45-season

samples. For example, Figs. 10c–e all show that ERA-40

length datasets are likely to overestimate the RP of 30-,

45-, and 100-yr RP events by approximately 7, 11, and

21 yr, respectively. For RPs greater than approximately

300 yr ERA-40 length datasets tend to underestimate

RP (Fig. 10f). Note, however, that the spread of possible

TABLE 3. A comparison of the GPD parameters to noncalibrated

DPOT Sw3q90 EWI for each dataset. The columns titled lower and

upper represent the lower and upper bounds of the CI calculated

from the likelihood profile. The parameters l, s, and j are from

Eqs. (1) and (2).

Dataset Lower l Upper

ERA-40 4.5 5.2 5.8

SYS3 4.6 4.8 5.0

SYS2 5.0 5.2 5.5

EC-DEM 3.5 3.7 3.9

Lower s Upper

ERA-40 20 23 28

SYS3 21 22 24

SYS2 17 18 19

EC-DEM 15 16 17

Lower j Upper

ERA-40 20.38 20.27 20.13

SYS3 20.10 20.06 20.01

SYS2 20.14 20.10 20.05

EC-DEM 20.15 20.11 20.06
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RP estimates at 45-season lengths is large (IQR ap-

proximately 30–120 yr) compared to the apparent bias

of approximately 11 yr. Therefore the issue of bias for

45-season length storm climatologies is secondary in

importance to sampling variability. Figure 11 shows the

same analyses as in Fig. 10 but using LM method of

fitting the GPD. The LM-fitted scale and shape param-

eters are less obviously biased (Figs. 11a,b) than their

ML counterparts. The small biases in these parameters

result in small negative biases in the 30- and 45-yr RP

around 1.1 and 2.1 yr, respectively. At higher RPs the

negative biases become proportionally larger in magni-

tude than for the lower RPs, with the biases at 100- and

500-yr RP being 14 and 220 yr, respectively. Investi-

gation of these biases using random storms simulated

from the fitted ML and LM GPDs are shown in Figs. 12

and 13. These figures are very similar to Figs. 10 and 11,

respectively. Almost all of the biases we see in the scale,

shape, and RP estimates are due entirely to biases in-

herit to the ML and LM methods of fitting the GPD.

Similar calculations reveal that these biases are com-

mon to all other EWI, although the magnitude of the

RP biases using ML with the index Sfq95q99 are much

lower than the RP biases in the magnitude-based EWI.

This seems to be a function of the magnitude of the shape

parameter: the more negative the shape parameter is, the

larger is the ML bias (Zhang and Stephens 2009).

Assuming that the bias can be explained by the GPD

fitting method we have applied a bias correction to

the ERA-40 estimated j and s of the form (~j, ~s)9 5

(j, s)9� B9, where B 5 Bias(j, s) and is measured

from the difference between the converged SYS3 EWI

GPD parameter value and the median SYS3 EWI

GPD parameter value at 45 seasons (e.g., shown as text in

Figs. 10a,b and Figs. 11a,b). Applying the bias correction

we obtain new estimates of the European windstorm

FIG. 7. Histograms of the number of Sw3q90-based windstorm occurrences per extended winter together with the

ML-fitted Poisson probability density function (open circles) for (a) ERA-40, (b) SYS3, (c) SYS2, and (d) EC-DEM.

At the bottom of each panel is the number of seasons in each dataset. The solid black vertical lines denote l [in

Eq. (2)]. See Table 1 for the number of windstorms identified in each dataset and Table 3 for error estimates of the

l parameter.
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climate as defined by each EWI and each fitting method

presented in Table 5. All ML-fitted EWI windstorms

have lower RPs after bias correction (Table 5, column 6).

The magnitude of the bias in RP is greatest for the Mean

EWI with a 50-yr event bias corrected becoming a 37.5-yr

event, whereas the magnitude of the bias in RP is lowest

for the Sfq95q99 index showing only a small reduction in

a 50-yr event to a 47.6-yr event. According to the results

of Zhang and Stephens (2009) the magnitude of the bias

correction to the shape parameter in their experiments

increases for decreasing values of j. This may explain

the results since the shape parameter of the Sfq95q99 is

less negative (20.03) than, say, the shape parameter of

Sw3q90 (20.28). All LM-fitted EWI windstorms have

a higher RP after bias correction (Table 5, column 12)

except the Sw3q90 index, which results in slightly neg-

ative corrections. As for the ML method the Mean index

displays the largest change in RP: a 50-yr event becomes

a 55.5-yr event after LM bias correction. All other LM

RP differences are small. This indicates that the use of

LM results in less biased RP estimates of the European

windstorm climate. Possible reasons for Sw3q90 dis-

playing slightly negative RP adjustments using the LM

method (Table 5), when results presented in Figs. 11c–f

indicate that positive RP adjustments may be needed,

especially for higher RPs, is believed to be a function

of the heteroscedasticity of the relationship between the

dynamically resampled scale and shape parameters, which

increases for more negative shape parameters. This has

a nonlinear effect on the RP calculation and leads to the

observed bias in Figs. 11c–f. This information is lost when

only the median bias in the shape and scale parameters is

used to correct the RPs.

Summarizing the results: if SYS3 windstorms are rep-

resentative of the parent distribution (i.e., when cali-

brated) then dynamical–statistical sampling implies that

ERA-40, by virtue of its length only and the ML method

of fitting the GPD, is probably underestimating the se-

verity (by overestimating the RPs of storms) of the

current windstorm climate for windstorms with RPs

FIG. 8. The calibration curves (gray lines) applied to the Sw3q90 time series of each s2d model (a)–(c) using ML and (d)–(e) using LM.

These gray lines represent the cubic spline fitted values to the differences in the empirical cumulative distribution function [black open

circles; Eq. (3)]. The x axes show the Sw3q90 and the Sw3q90 empirical percentiles (vertical black lines).

2106 J O U R N A L O F A P P L I E D M E T E O R O L O G Y A N D C L I M A T O L O G Y VOLUME 49



between 10 and 300 yr and overestimating the severity

of the windstorm climate (underestimating the RPs of

storms) for storms with RPs longer than 300 yr. Whereas,

if the ERA-40 storm climate is fitted using LM, the cli-

matology is relatively well represented except at higher

RPs where the method tends to overestimate the severity

of the windstorm climate.

Figure 14 presents the sampling uncertainty and fit

uncertainty (described in section 3d) of ERA-40 based

on calibrated SYS3 for two EWI, Sw3q90 and Sfq95q99,

contrasting the two parameter estimation methods.

Focusing first on the gray shaded regions of Figs. 14a,c,

representing the dynamical sampling uncertainty, we

see that the ERA-40 and SYS3 windstorm climatologies

overlap each other and lie within, but always in the up-

per part of, the 45%–55% percentile range of randomly

sampled 45-season SYS3 GPDs (Figs. 14a,c; also shown

in Fig. 10d). This result confirms that ML estimates of

the windstorm climatology are on average biased. In-

terestingly, approximately 20% of the randomly sam-

pled 45-season SYS3 GPDs (Figs. 14a,c, medium gray

shading) are lower than the ERA-40 GPD fit lower CI

FIG. 9. An intercomparison of the effect of three different calibration techniques and aliasing on the RP and RL of

the ML-fitted GPD to the Sw3q90 DPOT series for each s2d dataset and ERA-40. Using the (a),(b) PERC method

[Eq. (3)]; (c),(d) 95PERC technique; and (e),(f) MEAN method. Each dataset is colored according to the legend in

the top left of each panel. Panels (a),(c),(e) show SYS3 and SYS2 with the aliased 12-hourly ERA-40 Sw3q90, and

panels (b),(d),(f) show the EC-DEM model with the aliased 24-hourly ERA-40 Sw3q90. Dot–dashed colored lines

indicate the CIs of the fitted GPD.
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(black dot–dashed line). This indicates that the ML fit

uncertainty (profile log-likelihood method) of ERA-40

may be underestimating the possibility for less extreme

wind climatology than what is possible by drawing a

random 45-season sample from the SYS3 climatology.

Similarly, the upper boundary of the gray shading is much

lower than the ERA-40 GPD fit upper CI (black dot–

dashed line). This indicates that the ERA-40 GPD fit

uncertainty overestimates the width of the upper wind-

storm intensity uncertainty. In other words, ERA-40 ML

fit uncertainties seem to underestimate the possibility

for a less intense windstorm climate and seem to over-

estimate the possibility for a more intense windstorm

climate (these results are also true based on SYS2 PERC-

calibrated data, not shown). Another conclusion of these

experiments is that the median SYS3 fit uncertainty, de-

noted by the yellow lines in Figs. 14a,c, indicates that the

ERA-40 GPD fit uncertainty (black dot–dashed lines) is

a good estimate of the typical CI widths associated with

the GPDs fitted to the randomly sampled 45-season

SYS3 climatologies; that is, the yellow lines more or less

match the edge of the medium gray shaded regions. This

signifies that, given the sample of the observed climate

(i.e., ERA-40), the fit uncertainty estimates are not bi-

ased once the overall bias in the GPD fit is removed.

All results described above remain valid for the other

ML-fitted EWI for the range of thresholds higher than

those presented in Table 2. In contrast to the ML-fitted

climatologies, the 45-season LM-fitted climatologies of

Sw3q90 and Sfq95q99 are not biased (Figs. 14b,d); that

is, the ERA-40 and calibrated SYS3 climatologies fall

in the middle of the middle 10% of 45-season sampled

climatologies (light gray shaded region). However, the

width of the 45-season sampled climatologies (gray shaded

areas) cover a wider range of RP estimates than the ML

estimates. The wider range of LM climatologies shows

that the LM method is less accurate in determining the

long-term windstorm climate given a 45-season sample

than the ML bases climatologies, which have a lower

range (Figs. 14a,c gray shaded regions compared with

Figs. 14b,d shaded regions). The larger spread of LM-

based climatologies is being driven by the wider range of

fitted scale and shape parameters compared with ML

(Figs. 10a,b compared with Figs. 11a,b). Therefore the

use of ML results in more representative estimates of

the long-term storm climate given 45 seasons than the

LM-based climates after the ML bias has been removed.

On the other hand, the LM-based climates are not bi-

ased but the spread of possible sampled climates is wider

given 45 seasons of data. Similar conclusions can be

drawn from the SYS3 climatology based on the 95PERC

technique, yet the proposed windstorm climate is far more

extreme than ERA-40, implying that the 95PERC has not

adequately accounted for model differences. Therefore

these 95PERC-based results (not shown) should only be

seen as speculative.

The sampling experiment results give us details about

how reliable the LM and ML methods are. Alternatively,

the s2d climatologies can be used to simply quantify the

reduction in GPD fit uncertainty gained from having

a larger sample. The results are demonstrated in Fig. 15.

Here the width of the ML return level (nondimensional

units) and RP (yr) uncertainties (CIs) are plotted as

functions of the RP estimated from ERA-40. S2d RL

uncertainties are approximately one-third of the size of

ERA-40 RL uncertainties (Fig. 15a). The upper bound

of the return level CI is larger in magnitude than the

lower bound of the return level CI, showing the asym-

metry in the profile log-likelihood uncertainty estimates.

Figure 15b shows the improvements in the width of the

RP CI by using s2d data. For a given RP, say 20 yr, the

s2d upper (lower) bound is approximately 16% (40%)

of ERA-40 upper (lower) bound. Clearly, the greater

length of the s2d climatologies results in markedly re-

duced CI widths.

c. Estimates of windstorm-related loss

Windstorm fields identified in ERA-40 and s2d data-

sets are used as input to catXos. The first step in using

a windstorm field is to calibrate it with the Swiss Re

TABLE 4. A comparison of the GPD parameters fitted to the

PERC [Eq. (3)] DPOT Sw3q90 EWI for each s2d dataset. The

columns titled lower and upper represent the lower and upper

bounds of the CI calculated from the likelihood profile. The pa-

rameters l, s, and j are from Eqs. (1) and (2). ERA-40 12hr and

ERA-40 24hr refer to the aliased DPOT Sw3q90.

Dataset Lower l Upper

ERA-40 12hr 4.0 4.6 5.3

SYS3 4.6 4.8 5.0

SYS2 4.3 4.5 4.8

ERA-40 24hr 3.1 3.6 4.2

EC-DEM 3.5 3.7 3.9

Lower s Upper

ERA-40 12hr 20 24 28

SYS3 22 23 25

SYS2 23 25 26

ERA-40 24hr 18 23 28

EC-DEM 22 23 25

Lower j Upper

ERA-40 12hr 20.39 20.28 20.14

SYS3 20.31 20.28 20.24

SYS2 20.33 20.30 20.26

ERA-40 24hr 20.51 20.37 20.19

EC-DEM 20.42 20.38 20.34
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windstorm dataset (SR Hist). The calibration is de-

scribed in section 3c as C_s2d_to_SR. The C_ERA_

to_SR PERC adjustment curve (Fig. 16a, thick gray

line) shows that ERA-40 GW needs to be adjusted

negatively, which is expected since the GW is a measure

of the free atmosphere wind. Generally the negative

adjustment increases with GW and displays a rather

unusual behavior between ERA-40 GW values of 10–

30 m s21. The cause of this ‘‘bump’’ is related to the way

in which the Swiss Re windstorm fields are created.

Generally, only a limited number of pressure and wind

gust speeds observations were available in the wind field

reconstruction, usually concentrated in regions where the

windstorm was known to have caused damage. These

wind gust speeds are generally above 20 m s21. This has

had the effect that the Swiss Re windstorm fields may be

unreliable for wind gust speeds less than 20 m s21 in re-

gions that were not affected by the windstorm. While this

FIG. 10. The convergence of (a) s and (b) j and the (c) 30-, (d) 45-, (e) 100-, and (f) 500-yr RP of the calibrated

SYS3 Sw3q90 ML-fitted GPD as a function of the number of seasons taken from the 315-season integration. The light

gray shading shows the 45th–55th percentile range of the resampled SYS3 dataset, whereas the dark gray and me-

dium gray shading show the interquartile (50% confidence interval) and CI, respectively. The horizontal black lines

show the converged, s, j, and RP estimates using all available data. The horizontal dashed black line is the median of

the resampled estimates at 45-season length. The vertical black line denotes 45 seasons. In the top right of each figure

is magnitude of the bias at 45 seasons and percentage ratio of the bias to the interquartile range.
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has no effect on the actual loss values (see Fig. 2a), it ex-

poses differences between the datasets. The C_ERA_

to_SR adjustment uncertainty (Fig. 16a, thin vertical

black lines) calculated using resampled kernel density

estimates, shows some nonsymmetric behavior in the

adjustment amounts especially at higher percentiles.

Figures 16b–d show the C_s2d_to_ERA PERC adjust-

ment curves for each of the s2d datasets. The calibration

of the windstorm fields show similar adjustment curves

to the calibration of the Sw3q90 (Fig. 8); however,

all curves show a monotonic increasing (SYS3) or de-

creasing (SYS2) adjustment amount with increasing

GW unlike their EWI equivalents in Figs. 8b,c,e,f for

SYS2 and EC-DEM.

Figure 17 presents a comparison between loss esti-

mates derived from s2d, ERA-40, and Swiss Re wind-

storm datasets. In presenting these results we wish to

advise readers that the loss figures derived from ERA-40

and s2d are modeled loss estimates, which are critically

dependent on methods chosen to compare the model

climates and are not calibrated against loss data. In

contrast, the Swiss Re loss estimates are based on and

tested against independent loss data. Figure 17a com-

pares the SR Hist and SR Stoch loss-frequency curve(s)

(LFC) with those derived from ERA-40 windstorms.

First, the C_ERA_to_SR method brings the raw LFC of

ERA-40 (black solid and dashed lines in the top left

of Fig. 17a) to lie between the Swiss Re historic and

FIG. 11. As in Fig. 10, but using LM method.
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stochastic LFCs (green lines). The ERA-40 LFC based

on 121 windstorms (labeled SR ERA-40 C_ERA_

to_SR, the subset of storms in ERA-40 that match in

time with the Swiss Re storms; black dashed line) is gen-

erally below the MeteoSwiss (MS) ERA-40 C_ERA_

to_SR and could be due to some storms missing from

SR Hist, in terms of their potential loss. It is noticeable

that each of the ERA-40 LFCs and the Swiss Re his-

torical LFC reach a point where the LFC is a horizontal

straight line. LFCs produced by catXos have not been

modeled and represent empirical loss-frequency esti-

mates. The LFC curves remain horizontal at a RP equal

to the length of the dataset. This is also the reason why

the LFCs tend to display ‘‘jumps’’ at higher RPs because

of sampling. Figure 17b is similar to Fig. 17a but shows

the LFCs based on each of the s2d C_s2d_to_SR data-

sets. The combination of C_ERA_to_SR and C_s2d_

to_ERA (C_S2d_to_SR) shows that the s2d LFCs are

close to the ERA-40 LFC (black line) for RPs between 1

and 45 yr. Improved loss estimates are gained from the

s2d datasets in the range of 45–300 yr and are compa-

rable but lower than the SR Stoch results.

Figures 17c,d quantify the uncertainties; first in Fig. 17c

by exploring the sampling errors in loss estimates due to a

limited length of ERA-40 data. We use a similar resam-

pling technique as described in section 3d (see Fig. 14).

Taking 20 (a limited number because of computing and

data storage requirements) random 45-season samples

FIG. 12. As in Fig. 10, but using random samples from the GPD fitted to SYS3 using ML.
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of windstorms from SYS3 to calculate their expected

loss. The approximate spread of the LFCs is shown by

gray shading in Fig. 17c and quantifies the sampling un-

certainty in loss estimates due to using a dataset that is

only 45 seasons in length. The width of the approximate

confidence interval encompasses both the SR Hist and

SR Stoch LFCs (green lines). This figure demonstrates

the need to use alternative methods to estimate the RP

of very extreme wind-related loss events, such as those

currently used by Swiss Re (i.e., stochastic datasets) or

the alternative that we propose using s2d models.

Figure 17d compares the spread in the LFCs by re-

sampling the C_ERA_to_SR and C_s2d_to_ERA adjust-

ment curves (Fig. 16) within their uncertainty estimates.

Taking 20 random samples from the 200 resampled kernel

density estimates of the SYS3 adjustment curve (described

in section 3a). This results in the LFCs (gray shaded area,

Fig. 17d), which also encompass the two Swiss Re LFCs.

This figure demonstrates one of the caveats for using s2d

data, namely, that there are high uncertainties associ-

ated with calibration procedure which should not be ig-

nored. The approximate interquartile range of the LFCs,

shown by the dark gray shading, is lower than the best-

estimate SYS3 LFC (blue line). This is caused by the

distribution of the calibration curve error (Fig. 16b) hav-

ing a skewed distribution with higher densities at lower

adjustment values. It is not clear whether the kernel es-

timators are biased, especially at such high percentiles.

FIG. 13. As in Fig. 12, but using LM method.
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5. Discussion

The choice of threshold used for the GPD can have

a large influence on the windstorm climatology, espe-

cially if the data are not sampled from the extreme tail

of the distribution (Coles 2001). We performed exten-

sive experiments on the sensitivity of our results to the

choice of threshold combined with qualitative and quan-

titative measures of the GOF the GPD has to the EWI

data. We found that all conclusions remain valid for

thresholds above those shown in Table 2 and up to the

99.5% quantile threshold. The magnitude of biases in

ML- and LM-based climatologies varies in magnitude

(nonmonotonically with increasing threshold); however,

TABLE 5. New bias-corrected estimates of the RP (yr) of windstorms using the SYS3 windstorm climatology of each EWI calibrated

using the PERC method. Columns 2–4 show the RP ERA-40 storms together with the lower and upper bound of the CI (columns 2 and 4)

estimated using ML. Columns 5–7 show new estimates of RP in column 6 after correcting the bias caused by the ML method, together with

the lower and upper bounds of the SYS3 EWI CI (columns 5 and 7). Columns 8–10 and 11–13 are as in columns 2–4 and 5–7, respectively,

but using the LM method.

ERA-40 ML RP Biased SYS3 ML RP Bias corrected ERA-40 LM RP Biased SYS3 LM RP Bias corrected

EWI Lower RP Upper Lower RP Upper Lower RP Upper Lower RP Upper

Mean 0.8 1 1.3 0.9 1 1.1 0.8 1 1.3 0.9 1 1.1

3.2 5 8.2 4.1 4.7 5.8 3.1 5 10.6 4.2 5.2 6.6

5.2 10 20.2 7.8 8.9 12.5 5.2 10 40 8.1 10.5 17.2

10.6 30 109 20.7 24 44.3 11.1 30 1354 22 32.6 112

14.2 50 281 32 37.5 82.6 15.1 50 8751 34.4 55.5 330

17.1 70 574 42.4 50.1 126 18.4 70 19 415 46.3 78.9 749

20.5 100 1215 56.8 67.7 201 22.1 100 36 864 62.7 115 1633

28.7 200 3837 99.2 120 521 30.8 200 90 692 110 239 5063

Q95 0.8 1 1.2 0.9 1 1.1 0.8 1 1.3 0.9 1 1.1

3.2 5 7.9 4.1 4.9 5.7 3 5 11.7 4.5 5.1 7.4

5.3 10 19.2 7.7 9.4 11.9 4.9 10 48.7 8.5 10.2 20.9

10.5 30 96.1 19.9 26 40.1 9.4 30 4287 22.5 31.1 190

14 50 238 30.2 41.1 72.3 12.3 50 16 311 34.9 52.2 922

16.6 70 476 39.4 55.4 108 14.5 70 29 604 46.4 73.5 2389

19.8 100 1015 52 75.5 167 17.1 100 48 369 62.5 106 5146

26.8 200 3174 86.9 136 409 22.8 200 97 205 108 215 14 319

Sw3q90 0.8 1 1.3 0.9 1 1.1 0.8 1 1.3 0.9 1 1.1

3.2 5 8.1 4.2 4.9 6 3 5 11 4.1 5 6.2

5.1 10 20.4 7.8 9.4 12.7 5.3 10 56.1 7.4 9.8 14.1

9.5 30 128 19 25.9 43.8 10.9 30 2250 16.8 29.1 57.7

12.2 50 438 27.9 40.8 80.7 14.2 50 4623 23.5 48 122

14.1 70 1138 35.4 54.7 123 16.9 70 6247 28.9 66.7 210

16.2 100 2612 45 74.2 194 20 100 7886 35.8 94.5 390

20.7 200 7811 69.8 132 507 26.4 200 10 574 53.2 186 1307

Sfq95 0.8 1 1.3 0.9 1 1.1 0.8 1 1.3 0.9 1 1.1

3.1 5 8.4 4.2 4.8 6 3.2 5 10.5 4.3 5.1 6.5

5.2 10 21.2 8 9.4 13.3 5.4 10 35.5 8.2 10.2 15.8

10.8 30 116 21.4 26.9 49.4 11.2 30 479 22.1 31.1 72.2

14.9 50 292 33.5 43.5 94.1 15.1 50 1979 34.9 52.3 156

18.2 70 566 44.8 59.6 146 18.4 70 4143 46.8 73.7 261

22.3 100 1130 60.8 83.2 235 22.7 100 7835 63.2 106 464

32.7 200 3463 109 158 613 33.3 200 20 250 114 216 1389

Sfq95q99 0.8 1 1.2 0.9 1 1.1 0.8 1 1.3 0.9 1 1.1

3.1 5 8.4 4.2 4.9 6 3.2 5 11 4.3 5 6.7

5.2 10 21.1 7.9 9.8 13.5 5.5 10 37.2 8.5 10.1 16.9

11 30 112 21.3 28.9 52.2 12.2 30 519 24.5 30.7 92.8

15.2 50 272 33.5 47.6 102 17.2 50 1996 39.4 51.7 227

18.7 70 512 45 66.2 161 21.3 70 4096 54.2 72.9 438

23.2 100 1004 61.4 93.7 266 26.6 100 7670 76.2 105 890

34.4 200 3068 111 184 728 40.4 200 19 722 147 214 2862
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the sign of the biases remains the same as those shown in

Table 5 and in Figs. 10–13.

To use s2d climatologies to estimate wind-induced

loss we applied two stages of calibration. The first to

make ERA-40 comparable with SR Hist (C_ERA_

to_SR) and the second to make s2d comparable with

ERA-40 (C_s2d_to_ERA). Conceivably we could re-

move the need for C_ERA_to_SR by using ERA-40 to

define the vulnerability function (cf. Fig. 2a). However,

some ERA-40 parameters may not have the accuracy or

the resolution for the purposes of modeling wind-related

loss (e.g., ERA-40 wind gust; Della-Marta et al. 2009).

There remains the need to apply C_s2d_to_ERA if

meaningful loss estimates are to be produced.

Previous work on the impact of GCM resolution on

cyclone frequencies (Jung et al. 2006) and interannual–

decadal variability of large-scale circulation (Weisheimer

et al. 2003) suggests that the statistics of extreme winds

are likely to be affected; therefore we place more em-

phasis on SYS3 results and conclusions. There is strong

evidence in Jung et al. (2006) that horizontal model res-

olution has a large impact on the number and intensity of

cyclones simulated in the ECMWF atmospheric model.

They note that the dynamical effect of changing hori-

zontal resolution dominates over the truncation effect for

intense cyclones, whereas the truncation effect dominates

for shallow cyclones. They also suggest that the ECMWF

atmospheric model, tuned to be particularly skillful in

medium-range weather forecasting, may have defects

when it comes to extended-range integrations at rela-

tively low horizontal resolution. They base this argument

on Bengtsson et al. (2006), who found that their GCM

produced a realistic representation of extratropical cy-

clone characteristics, despite the relatively coarse reso-

lution used (T63). All climate models—whether they be

oceanic, atmospheric, or coupled models—display in-

consistencies with observations. Sometimes these incon-

sistencies are in the climate of the model and/or its

variability. Key components of the model may be pa-

rameterized, leading to unresolved scales of interaction

FIG. 14. The sampling and fit uncertainty in the RP and RL of ERA-40 using SYS3 DPOT series calibrated using

the percentile method for (a) Sw3q90 and (b) Sfq95q99. The light gray shading is 45th–55th percentile range of the

resampled SYS3 dataset, whereas the dark gray and medium gray shading show the interquartile (50% confidence

interval) and CI, respectively. The yellow lines denote the median width of the upper and lower SYS3 fit uncertainties

which have been added to the ERA-40 best-fit GPD (black line). Each dataset is colored according to the legend in

the top left of each panel. Dot–dashed colored lines indicate the CIs of the fitted GPD. See section 3d for more

information.
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within the model, leading to biases or misrepresenta-

tions. Unfortunately, given the complexity of dynamical

models, it is often difficult to pinpoint the exact reason

for a large-scale bias, for example, in circulation, as seen

in Fig. 3 of this study. Readers are encouraged to ref-

erence Anderson et al. (2003, 2007) for a more complete

analysis of ECMWF season forecast model biases and

ECMWF (2003, 2007) for a full specification of the

model physics.

The 850-hPa GW is suitable for the intercomparison

of different s2d data since it is independent of surface

boundary layer parameterization. It is available for ba-

sically any GCM run. However, the GW at 850 hPa is

not fully representative of the wind gusts important for

modeling of wind-related loss. GW is an analyzed vari-

able, leading to aliasing of wind intensity (Della-Marta

et al. 2009). Thus, we must consider the loss estimation

figures with caution.

The aliasing technique was necessary because of the

sensitivity of the storm selection method to the temporal

resolution of the EWI. Using another storm selection

technique (e.g., Lagrangian-based storm tracking) prob-

ably would not have helped since these methods are also

sensitive to spatial and temporal resolution (Bhend 2005;

Raible et al. 2008). In the absence of a reliable integrated

model parameter (e.g., maximum wind gust) the spatial

and temporal sampling must be adequate to analyze the

variability of interest.

Do the s2d hindcasts represent the current climate?

Each of the extended winter seasons are constructed

from seasonal forecasts initialized at different times (see

Table 1, e.g., September and November forecasts com-

bined), possibly conditioning the dynamics by the ob-

served initial states during the hindcast period. The

longer the hindcast the more the dynamics are able to

sample a wider range of initial states leading to a fuller

range of possible simulated weather. Likewise, an un-

equal number of ensembles within hindcasts could lead to

dynamics biased to the initial states. The limited resolu-

tion of s2d models indicates that the statistics of extremes

should only be inferred for synoptic-scale features.

A related point to that above is the assumption that

our seasonal resampling (cf. Figs. 10–14, which is white

in spectrum) represents likely interannual climate vari-

ability. For instance, it would be useful to test the in-

fluence of multiannual and decadal climate variability on

the convergence of the parameters shown in Figs. 10–14.

Resampling with a reddened spectrum would probably

result in a slower convergence of the parameters to their

long-term values.

In Fig. 7 we showed a certain amount of under-

dispersion in the Poisson fits to the extended winter

season storm frequency. On the contrary, Mailier et al.

(2006) show that storms tend to cluster in time (i.e., the

Poisson distribution is overdispersed) in this region.

Further investigation and comparison with Della-Marta

et al. (2009, see their Fig. 9a) show that it is related to the

choice of domain and the continental perspective of

the EWI used in this study. Extreme winds events in the

Mediterranean region exhibit a clear tendency not to

cluster in time as much as in the northwestern European

and adjacent Atlantic Ocean regions.

6. Conclusions

This study has investigated the use of seasonal-to-

decadal AOGCM forecast data to estimate the current

climate of extreme winds associated with synoptic-scale

cyclones over the eastern North Atlantic and western

European domain. Differences between the physics,

spatial and temporal resolution, and the hindcast length

FIG. 15. A comparison of Sw3q90 RL and RP GPD fit un-

certainties as a function of ERA-40 windstorm RP. (a) The width of

the GPD RL CI for ERA-40 and s2d datasets. (b) The width of the

GPD RP CI for ERA-40 and s2d datasets. The datasets are de-

picted according to the legend shown in the top left of the panels.

Note that the x axis of each panel is logarithmic.
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result in different windstorm climatologies to ERA-40

(cf. Figs. 3 and 6). After the application of a percentile

calibration technique the s2d EWI-based windstorm

climates were made very similar to ERA-40 windstorm

climate (cf. Figs. 9a,b). This effectively removed the

possibility for a different estimate of the current wind-

storm climate as defined by ERA-40. However, dy-

namical sampling experiments, utilizing the long s2d

datasets, revealed that both the ML and LM methods of

estimating the parameters of the GPD [Eq. (1)] contain

biases at equivalent sample sizes (around 300 storms; cf.

Table 2) from 45 seasons of reanalysis data.

New estimates of the European windstorm climate that

have been calibrated to ERA-40 and then bias corrected

suggest that the windstorm climate estimated from ERA-

40 using ML method underestimates the severity of the

windstorm climate, whereas using the LM method over-

estimates the severity of the windstorm climate at high

RP. This suggests that, for example, a windstorm event

that is estimated by ERA-40 to have an RP of 50 yr is

more likely to be approximately a 40-yr event (cf. Table

5) when the ML method is used. Evidence to support this

hypothesis is seen in the lack of convergence of the GPD

parameters using datasets, which are 45 seasons in length

(cf. Fig. 10). Experiments using random storms (cf. Fig.

12) indicate that the likely cause of this bias is inherent

in the ML GPD parameter estimation method. Thus, by

virtue of its length and the ML method, ERA-40-based

FIG. 16. As in Fig. 8, but for C_ERA_to_SR and C_s2d_to_SR applied to GW fields. (a) The PERC calibration

curve (gray line) applied to ERA-40 windstorm fields (C_ERA_to_SR, see section 3c). The calibration curves

C_ERA_to_SR (gray lines, see section 3c) applied to each windstorm field in each of the s2d datasets (b) SYS3 and

(c) SYS2. The error bars represent the CI of the fitted cubic spline (gray line).
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windstorm climatologies (e.g., Della-Marta et al. 2009)

are probably underestimating the severity of the current

windstorm climate for windstorms with RPs between 10

and 300 yr and overestimating RPs of storms greater than

300 yr. However, these biases are relatively small com-

pared to the role of dynamical sampling variability, which

indicates, given 45 seasons to estimate the windstorm

climate, the biases represent only around 20% (5% for L-

moments) of the interquartile range of possible climates.

Using s2d allows various sampling experiments to

quantify uncertainties associated with having ERA-40

length datasets. The ML ERA-40 climatology lies within

the middle 10% of 45-season subsampled SYS3 wind-

storm climatologies (cf. Figs. 14a,c). This implies that the

GPD fit to ERA-40 is accurate given that it is only 45

seasons in length, yet the windstorm climate of ERA-40 is

not likely (;65% chance) to have converged to the parent

distribution (cf. Figs. 14a,c, blue line). The second con-

clusion from this analysis is that the profile log-likelihood

ERA-40 GPD fit uncertainty overestimates the width of

the lower bound of the RP of windstorms. Conversely, we

also find that the upper bound of the ERA-40 RP fit un-

certainty is underestimated. For the LM method the

width of the 45-season sampled climatologies are not bi-

ased but cover a wider range of RP estimates than the ML

estimates. The wider range of LM climatologies implies

(cf. Figs. 14b,d) that the LM method is less accurate in

determining the long-term windstorm climate given a 45-

season sample than the ML-based climatologies.

We have shown that there is possibly useful skill in the

prediction of the intensity of wind over the western

European domain from the ECMWF s2d models during

the first month of the November initialized forecasts

(cf. Fig. 4) with little skill thereafter. Therefore, there is

FIG. 17. Loss-frequency curve comparison for various datasets and calibration configurations. (a) A comparison of

SR Hist and SR Stoch losses (from the educational catXos model) and the uncalibrated and calibrated loss curves

derived from matched storms (SR ERA-40 and SR ERA-40 C_ERA_to_SR, respectively) as well as the MeteoSwiss-

identified windstorms both uncalibrated and calibrated (MS ERA-40 and MS ERA-40 C_ERA_to_SR, respectively

using the PERC method) according to the legend in the top left of the panel. (b) SR Hist and SR Stoch loss fre-

quencies are the same as in (a) and are compared with the loss frequencies of C_s2d_to_ERA SR s2d data according

to the legend in the top left of the panel. (c) As in (b), but only for SYS3 C_s2d_to_ERA SR loss-frequency data (blue

line) and ERA-40 C_ERA_to_SR loss frequencies. The shaded regions show the approximate maximum and

minimum (light gray) range and the interquartile range of (dark gray) of loss frequency of 20 random subsamples of

45 seasons in length from the full 315-season dataset. (d) As in (c), but the shaded regions show the approximate

maximum and minimum (light gray) range and the approximate interquartile range of (dark gray) of loss frequency

based on 20 resampled SYS3 calibration curves (C_s2d_to_SR).
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potential value in monthly forecast systems predicting

four weeks in advance (Weigel et al. 2008a).

Our analysis has demonstrated that it is possible to use

s2d data to gain useful estimates of the current windstorm

climate and related loss. These data give opportunities

to compliment the Swiss Re stochastically generated

windstorm events with a completely independent set of

physically consistent simulations of extreme wind-related

weather in the current climate. New loss uncertainty es-

timates associated with sampling 45 seasons from SYS3

advocate the use of either a stochastically generated

windstorm dataset as used by Swiss Re, or a dynamical

ensemble-based dataset to improve the estimates of loss

associated with high RP events. While there remains

considerable uncertainty in long RP loss estimates be-

cause of the need to propagate calibration errors

through the loss model, we demonstrate that s2d models

are a powerful tool for exploring the climate of extremes

and offer another perspective on the windstorm climate

over the eastern North Atlantic and western Europe.
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APPENDIX A

List of Acronyms

95PERC The 95th percentile method of cali-

bration

AOGCMs Atmosphere–ocean general circulation

models

C_ERA_to_SR The calibration of ERA-40 wind cli-

matology to the SR Stoch wind cli-

matology

C_s2d_to_ERA The calibration of s2d wind climatol-

ogy to the ERA-40 wind climatology

C_s2d_to_SR The calibration of s2d wind climatol-

ogy to the SR Stoch wind climatology

catXos Educational version of the Swiss Re

windstorm loss model

CI Confidence interval (in most cases the

95% confidence interval)

DPOT Declustered peaks over threshold series

EC-DEM ECMWF s2d model used in the

DEMETER project

ECMWF European Centre for Medium-Range

Weather Forecasts

ERA-40 40-yr ECMWF Re-Analysis

EVA Extreme value analysis

EWI Extreme wind index

GCM General circulation model

GOF Goodness of fit (assessed using the

Anderson–Darling test statistic)

GPD Generalized Pareto distribution

GPH Geopotential height

GW Geostrophic wind speed

IQR Interquartile range

LFC Loss-frequency curve

LM The L-moments method

Mean An EWI defined in appendix B

MEAN The mean method of calibration

ML The maximum likelihood method

PERC The percentile method of calibration

Q95 An EWI defined in appendix B

RL Return level

RP Return period

RPSSd The debiased ranked probability skill

score

s2d Seasonal-to-decadal climate forecasts

Sfq95 An EWI defined in appendix B

Sfq95q99 An EWI defined in appendix B

SR Hist Swiss Re historical wind field dataset

SR Stoch Swiss Re stochastic wind field dataset

Sw3q90 An EWI defined in appendix B

Swiss Re Swiss Reinsurance Company

SYS2 ECMWF system2 s2d model

SYS3 ECMWF system 3 s2d model

APPENDIX B

Mathematical Notation of Extreme Wind Indices

This appendix describes each of the extreme wind

indices in mathematical notation for the benefit of

readers who may wish to implement such indices. The

content of this appendix has been taken from Della-

Marta et al. (2009). The indices are denoted in terms of

a generic wind variable W. Where possible we tried to

take into account the unequal areas of each grid box by

weighting sums and multipliers by the cosine of the

latitude of each grid point.
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a. Mean: Mean wind (m s21)

X(t) 5
1

N
kd

�
x,y2d

k(x, y)w(w, y, t), (B1)

where k are the individual gridpoint weights, which

only depend on y, k(x, y) 5 cos[latitude (y)], N
kd

5

�x,y2dk(x, y), and d denotes the domain.

b. Q95: The spatial 95% quantile wind (m s21)

Q95(t) 5 F�1
* (p) 5 min w : p # F*(W)

� �
, (B2)

where p 5 0.95 and F
*

is the latitude-weighted empirical

cumulative distribution function of fw(x, y, t):(x, y)2 dg.

F*(W) 5
1

N
kd

�
x,y2d

k(x, y)1[(x, y, t) # W], (B3)

where 1 5
1 : w(x, y, t) # W
0 : otherwise

�
.

c. Sw3q90: Cube root of the sum of wind cubed
above the domain climatological 90% quantile
(nondimensional)

Sw3q90(t) 5 �
x,y2d

1
.q90f g[w(x, y, t) . q90 ]k(x, y)

n 

3 [w(x, y, t)� q90]
o3
!1/3

, (B4)

where 1
.q90f g5

1 : w(x, y, t) . q90
0 : otherwise

�
. The domain mean

quantile function q90 is given by

1

N
d

�
x,y2d

q90(x, y), (B5)

where q90(x, y) 5 F 21(p) 5 minfw:p # F(W)g, p 5

0.90; F is the empirical cumulative distribution function

of fw(x, y, t): t 2 ONDJFMAg.

d. Sfq95: Sum of the fraction of wind divided by the
gridpoint climatological 95% quantile
(nondimensional)

Sfq95(t) 5 �
x,y2d

1
.1f g

w(x, y, t)

q95(x, y)

� �
k(x, y)

w(x, y, t)

q95(x, y)
, (B6)

where 1
.1f g5

1 :
w(x, y, t)

q95(x, y)

� �
. 1

0 : otherwise

8<
: . The gridpoint quan-

tile function q95 is given by

q95(x, y) 5 F�1(p) 5 min w : p # F(W)f g, (B7)

where p 5 0.95.

e. Sfq95q99: Sum of the fraction of extreme wind
divided by the length of the distribution tail
(nondimensional)

Sfq95q99(t) 5 �
x,y2d

1f.1g
w(x, y, t)� q95(x, y)

q99(x, y)� q95(x, y)

� �

3 k(x, y)
w(x, y, t)� q95(x, y)

q99(x, y)� q95(x, y)
,

(B8)

where 1
.0f g5

1 :
w(x, y, t)� q95(x, y)

q99(x, y)� q95(x, y)

� �
. 0

0 : otherwise

8><
>: . The grid-

point quantile functions q95 and q99 are given above.
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